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1 Introduction
Neural networks (NNs) playing the role of controllers have demon-
strated impressive empirical performances on challenging control
problems. However, the potential adoption of NN controllers in real-
life applications also raises a growing concern over the safety of
these neural network-controlled systems (NNCSs), especially when
used in safety-critical applications. We present POLAR-express [12],
a reachability analysis tool for safety verification of NNCSs based on
polynomial arithmetic. POLAR-Express uses a novel approach to it-
eratively over-approximate the neuron output ranges layer-by-layer
with a combination of Bernstein polynomial approximation for con-
tinuous activation functions and TaylorModel (TM) arithmetic. This
approach can overcome the main drawback in standard TM’s inabil-
ity to handle functions that cannot be well approximated by Taylor
polynomials, and significantly improve the accuracy and efficiency
of reachable states computation for NNCSs. POLAR-Express offers a
symbolic remainder approach when estimating the output range of
a neural network, to tighten the over-approximation. The tool sup-
ports general feed-forward neural networks with continuous but
not necessarily differentiable activation functions. POLAR-Express
also features multi-threading support to parallelize the computation
for layer-by-layer propagation to speed up the verification process.

To the best of our knowledge, POLAR-Express is the state-of-
the-art verification tool for the reachability analysis of NNCSs.
Compared to other existing tools [2, 5, 7, 9–11], it generates the
most accurate and tightest reachable set with the highest efficiency.
We hope POLAR-Express can serve as an accessible introduction
to these analysis techniques for those who wish to apply them to
verify NNCSs in their own applications.We also provide installation
instructions and example usage of POLAR-Express in this work.
The source code is available at https://github.com/ChaoHuang2018/
POLAR_Tool

2 POLAR-Express
2.1 Background
NNCS. NNCSs are a class of cyber-physical systems where a neural
network serves as the primary controller. As shown in Fig. 1, we
consider the plant dynamics of an NNCS as ¤𝑥 = 𝑓 (𝑥,𝑢) where
the state variable is 𝑥 ∈ X ⊆ R𝑛 , control input is 𝑢 ∈ U ⊆ R𝑚 ,
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Figure 1: Formal Definition of NNCS

and the dynamic 𝑓 : R𝑛 × R𝑚 → R𝑛 is a Lipschitz continuous
function, ensuring a unique solution of the ODE. Such a system can
be controlled by a feedback NN controller 𝜅 (·) at 𝑖-th (𝑖 = 0, 1, · · · )
sampling period 𝑖𝛿 . In the preprocessing phase, 𝜅 (·) retrieves
sensor measurements 𝑦 and transforms them to the NN controller’s
input format 𝑔(𝑦). In the postprocessing phase, the NNCS system
reads system state 𝑥𝑖𝛿 , generates a control input 𝑢 = ℎ(𝑣) from the
NN controller output 𝑣 = 𝜅 (𝑥𝑖𝛿 ), and the system evolves according
to ¤𝑥 = 𝑓 (𝑥,𝑢) within the period of [𝑖𝛿, (𝑖 + 1)𝛿]. The flowmap
function 𝜑 (𝑥0, 𝑡) : R𝑛 × R≥0 → R𝑛 describes the solution of the
NNCS, which maps the initial state 𝑥0 to the system state 𝜑 (𝑥0, 𝑡)
at time 𝑡 starting from 𝑥0. We call a state 𝑥 ′ reachable if there exist
𝑥0 ∈ X and 𝑡 ∈ R≥0 with 𝑥 ′ = 𝜑 (𝑥0, 𝑡). A reachable set X𝑟𝑇 is
a collection of all reachable states within a time range 𝑇 = R≥0
given an initial space X0 = 𝑥0, i.e., X𝑇𝑟 = {𝜑 (𝑥0, 𝑡) |𝑥0 ∈ X ∧ 𝑡 ∈ 𝑇 }.
Intuitively, once the reachable set X𝑇𝑟 is non-overlapping with the
unsafe sets X𝑢 , safety is guaranteed for such an NNCS throughout
the time horizon 𝑇 .
POLAR-Express. POLAR-Express is a state-of-the-art tool devel-
oped to compute an over-approximation of the reachable set for
NNCSs. This over-approximation is crucial for safety verification,
as it provides a guaranteed upper bound on all possible system be-
haviors. If the over-approximated reachable set does not intersect
with any unsafe states, then the system is provably safe.

2.2 Techniques of POLAR-Express
POLAR-Express computes the reachable set for NNCSs using the
framework outlined in Algorithm 1. It iteratively computes flow-
pipes that over-approximate the reachable states of the system over
discrete time steps. The most critical aspect of this process is the
over-approximation of the neural network controller’s behavior,
which is achieved through the layer-by-layer propagation method
detailed in Algorithm 2. This section addresses each formulation in
detail.
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Algorithm 1 Framework of POLAR-Express

Require: Plant dynamics 𝑥 ′ = 𝑓 (𝑥,𝑢), preprocessing 𝑔(·), post-
processing ℎ(·), NN controller 𝜅 (·), number of control stepsN ,
initial set 𝑋0

Ensure: Over-approximation of the reachable set over the time
interval of [0, 𝐾𝛿] where 𝛿𝑐 is the control step size

1: R ← ∅
2: X0 ← 𝑋0
3: for 𝑖 = 0 to N − 1 do
4: Computing a superset Y𝑖 for the range of 𝜋 (X𝑖 )
5: Computing a supersetZ𝑖 for the range of 𝑔(Y𝑖 )
6: Computing a supersetV𝑖 for the range of𝜅 (Z𝑖 ), with multi-

threading support
7: Computing a supersetU𝑖 for the range of ℎ(V𝑖 )
8: Computing a set F of flowpipes for the continuous dynam-

ics ¤𝑥 = 𝑓 (𝑥,𝑢) with 𝑢 ∈ U𝑖 from the initial set 𝑥 (0) ∈ X𝑖 over
the time interval of [𝑖𝛿, (𝑖 + 1)𝛿]

9: R ← R ∪ F
10: Evaluating an overapproximation for the reachable set at

the time 𝑡 = (𝑖 + 1)𝛿 based on F and assigning it to X𝑖+1
11: end for
12: return R

Layer-by-layer Propagation with Multi-Threading Support.
POLAR-Express uses the layer-by-layer propagation scheme to
compute a TM output for the NN. Algorithm 2 presents comput-
ing tighter TM over-approximation for the activation functions.
First, we compute the polynomial approximations for the activa-
tion functions of the neurons in the current layer. Second, interval
remainders are evaluated for those polynomials to ensure that for
each TM of the activation function. Third, 𝑝𝑖+1 (𝑥0, 𝐼𝑖+1) is computed
as the TM composition. When there are multiple layers, starting
from the first layer, the output TM of a layer is treated as the input
TM of the next layer, and the final output TM is computed by com-
posing TMs layer-by-layer. The computation of those TMs can be
conducted in parallel, retaining time when the dimension of NN
layers is large.

More precise Overapproximation fo ReLU functions. POLAR-
Express achieves a more precise and efficient Bernstein overapprox-
imation for ReLU activation functions by leveraging the convex-
ity property of ReLU. For a ReLU function over a domain [𝑎, 𝑏]
that includes 0, the method computes an order-𝑘 Bernstein poly-
nomial 𝑝 (𝑥) as an upper bound. Then, it creates a tight lower
bound by shifting 𝑝 (𝑥) down by 𝑝 (0)/2. The resulting Taylor model
(𝑝 (𝑥) − 0.5𝜀, [−0.5𝜀, 0.5𝜀]), where 𝜀 = 𝑝 (0), provides a guaranteed
overapproximation of the ReLU function. This approach is both
more precise, as it tightly bounds the ReLU function from above
and below, and more efficient, as it avoids the need for additional
sampling or complex remainder calculations typically required for
other activation functions.
Symblic Remainder. To tighten the over-approximation, POLAR-
Express stores the TM intervals symbolically with their linear trans-
formation matrix and only evaluates the remainder interval at the
end. This approach is called symbolic remainder, which reduces the

Algorithm 2 Layer-by-layer propagation using polynomial arith-
metic and TMs
Require:
1: Input TM (𝑝1 (𝑥0), 𝐼1) with 𝑥0 ∈ 𝑋0
2: Weight matrices𝑊1, . . . ,𝑊𝑀+1 for hidden and output layers
3: Bias vectors 𝐵1, . . . , 𝐵𝑀+1 for hidden and output layers

Ensure: TM (𝑝𝑟 (𝑥0), 𝐼𝑟 ) containing the set 𝜅 ((𝑝1 (𝑥0), 𝐼1))
4: (𝑝𝑟 , 𝐼𝑟 ) ← (𝑝1, 𝐼1)
5: for 𝑖 = 1 to𝑀 + 1 do
6: (𝑝𝑡 , 𝐼𝑡 ) ←𝑊𝑖 · (𝑝𝑟 , 𝐼𝑟 ) + 𝐵𝑖
7: Compute polynomial approximation 𝑝𝜎,𝑖 for activation

functions 𝜎 w.r.t. domain (𝑝𝑡 , 𝐼𝑡 )
8: Evaluate conservative remainder 𝐼𝜎,𝑖 for 𝑝𝜎,𝑖 w.r.t. domain
(𝑝𝑡 , 𝐼𝑡 )

9: (𝑝𝑟 , 𝐼𝑟 ) ← 𝑝𝜎,𝑖 (𝑝𝑡 + 𝐼𝑡 ) + 𝐼𝜎,𝑖
10: end for
11: return (𝑝𝑟 , 𝐼𝑟 )

accumulation of over-approximation error in TM by avoiding the
wrapping effect in linear mappings.

3 Benchmark Evaluations
Benchmarks. Our NNCS benchmark suite encompasses a diverse
set of control tasks with varying complexity, derived from multiple
sources [1, 3, 4, 6, 8, 10]. The suite includes:

• Benchmarks 1-6: These involve 2-4D ODEs with 10-60 verifi-
cation steps to verify if NNCS can reach the target set from
any initial state in N control steps.
• Discrete Mountain Car: This 2D NNCS describes an under-
powered car driving up a steep hill with 150 control steps.
• Adaptive Cruise Control: This 6D systemmodels vehicles over
50 steps to maintain a safe distance between the vehicles.
• 2D Spacecraft Docking: This 5D system has 120 control steps
and focuses on maintaining a safe velocity throughout the
docking process.
• Attitude Control: This system models 6D spacecraft attitude
dynamics.
• Quadrotor-MPC: This 9D hybrid system features a quadrotor
with constant velocity over 30 control steps.
• QUAD20: This system models 12D quadrotor dynamics.

These benchmarks are designed to test scalability across system di-
mensionality, time horizons, and neural network architectures. The
neural network controllers employed in these systems range from
2-3 hidden layers with 16-100 neurons per layer, utilizing activation
functions such as ReLU, sigmoid, and tanh. The primary objective of
these benchmarks is to evaluate reachability. Specifically, each task
verifies if the NNCS can reach a defined target set from any initial
state within N control steps. Tool performance is assessed based
on its ability to prove these reachability tasks. For a comprehensive
understanding of these benchmarks, including detailed specifica-
tions and implementations, we refer readers to the POLAR-express
GitHub repository at https://github.com/ChaoHuang2018/POLAR_
Tool/tree/main/POLAR_Express_Benchmarks.
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Figure 2: Verification results.Dim indicates the dimensions of
input for NN controllers in each benchmark.NNArchitecture
lists activation functions and network structures in each
benchmark. For each tool, we provide verification results and
time in seconds. mt is short for multi-threads (12 threads)
and st is short for single-thread
Stopping Criteria. Every test produces one of the following four
results: (Yes) the reachability property is proved, (No) the reacha-
bility property is disproved, (U) the computed over-approximation
is too large to prove or disprove the property with the best tool
setting we can find, (DNF) a tool or system error is reported and
the reachability computation fails.
Benchmark Results. According to the experimental results in
Fig. 2, POLAR-Express demonstrates state-of-the-art performance
across all benchmarks. It successfully verifies each task, achieving
the tightest reachable set computations and the highest runtime
efficiency. The multi-threading (mt) support greatly benefits higher-
dimensional systems, reducing runtimes compared to the single-
threading (st) version, especially evident in complex benchmarks
like QUAD20 and 2D Spacecraft Docking.
A Recent Runtime Verification Benchmark.We performed a
runtime case study for a Turtlebot navigation system equipped
with LiDAR [13]. The Turtlebot, controlled by a neural network
(NN) for steering, navigates a left turn scenario with obstacles.
POLAR-Express is employed to compute the reachable sets of the
NN controller 𝜅𝑛𝑛 in real-time, projecting the Turtlebot’s poten-
tial positions and orientations 30 steps into the future. If POLAR-
Express detects that the reachable set intersects with any unsafe
state, the system switches control to a backup obstacle avoidance
controller 𝜅𝑏 . Once 𝜅𝑏 has steered the Turtlebot out of danger,
POLAR-Express continues to evaluate the safety of 𝜅𝑛𝑛 . When the
computed reachable sets for 𝜅𝑛𝑛 no longer intersect with obstacles,
control is transferred back to the NN controller.

POLAR-express operates effectively in both single (3a) and mul-
tiple obstacle avoidance scenarios (3b). In the multiple-obstacles
scenario, our runtime framework consistently manages several con-
troller switches, ensuring safety throughout the operation (3c). This

Figure 3: The navigation trajectory of Turtlebot with our
runtime verification based control by 𝜅𝑛𝑛 (green) and 𝜅𝑏 (red)
for a). navigating around a single obstacle, and b). navigating
through multiple obstacles.

controller switching strategy, guided by POLAR-Express’s real-time
safety verification, ensures that the Turtlebot maintains safe naviga-
tion while maximizing using the more sophisticated NN controller
when conditions allow.

4 How to use POLAR-Express
4.1 Installation
System Requirements: Ubuntu 18.04, MATLAB 2016a or later.
POLAR relies on the Taylor model arithmetic library provided by
Flow*. Please install Flow* with the same directory as POLAR. You
can either use the following command or follow the manual of
Flow* for installation.

Install dependencies through apt-get install
sudo apt-get install m4 libgmp3-dev libmpfr-dev
libmpfr-doc libgsl-dev gsl-bin bison flex gnuplot-x11
libglpk-dev gcc-8 g++-8 libopenmpi-dev
libpthread-stubs0-dev

Download Flow*
git clone https://github.com/chenxin415/flowstar.git

Compile Flow*
cd flowstar/flowstar-toolbox
make

4.2 Example Usage
Consider the following nonlinear system (see Benchmark 1 in the
source code) 

¤𝑥0
¤𝑥1
¤𝑢

 =


𝑥1
𝑢𝑥21 − 𝑥0

0


Wedeclare the state and input variables (see reachnn_benchmark_1.cpp)

// Declaration of the state and input variables.
unsigned int numVars = 4;
Variables vars;

int x0_id = vars.declareVar("x0");
int x1_id = vars.declareVar("x1");
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// declaration of time variable t
int t_id = vars.declareVar("t");
int u_id = vars.declareVar("u");

// Define the continuous dynamics.
ODE<Real> dynamics({"x1", "u*x1^2-x0",

"1", "0"}, vars);

Note that "1" and "0" in dynamics means ¤𝑡 = 1, and ¤𝑢 = 0, respec-
tively. Consider an initial set 𝑥0, 𝑥1, 𝑢 of (0.85, 0.55, 0) respectively,
using a NN controller with ReLU_tanh activation function,

// Define initial state set
Interval init_x0(0.85 - w, 0.85 + w),

init_x1(0.55 - w, 0.55 + w),
init_u(0);

// Define the neural network controller.
NeuralNetwork nn(nn_1_relu_tanh);

where w is the width of the initial set. To define the target set,
// Define target set
vector<Constraint> targetSet;
Constraint c1("x0 - 0.2", vars); // x0 <= 0.2
Constraint c2("-x0", vars); // x0 >= 0
Constraint c3("x1 - 0.3", vars); // x1 <= 0.3
Constraint c4("-x1 + 0.05", vars); // x1 >= 0.05

The NN controller is specified in nn_1_relu_tanh file as follows
2 // number of inputs
1 // number of outputs
2 // number of hidden layers
20 // number of nodes in the first hidden layer
20 // number of nodes in the second hidden layer
ReLU // Activation function of the first layer
ReLU // Activation function of the second layer
tanh // Activation function of the output layer
// Weights of the first hidden layer
-0.0073867239989340305
...
// Bias of the first hidden layer
-0.07480818033218384
...
0 // Offset of the neural network
4 // Scala of the neural network

Then we can verify the NNCS with the following command under
make reachnn_benchmark_1 && ./reachnn_benchmark_1
0.05 35 4 6 1 relu_tanh

where 0.05 is the width of the initial set, 35 is the total steps that
need to be verified, 4 is the order of Bernstein Polynomial, 6 is the
order of Taylor Model, 1 specifies option to use symbolic remainder
and relu_tanh specifies the NN controller with ReLU and tanh
activation functions which points to nn_1_relu_tanh file. Fig. 4
shows the computed flowpipe from the above command.
The output file of POLAR shows the verification results

// Verification result at the 35th step
Verification result: Yes(35)
// Total computation time in seconds
Running Time: 11.000000 seconds

Figure 4: The computed flowpipes

5 Future Directions
While POLAR-Express represents a significant advance in NNCS
verification, scalability to high-dimensional systems remains a chal-
lenge. Future work may focus on addressing this limitation, poten-
tially throughmore advanced decomposition techniques or by lever-
aging structure in specific classes of neural network controllers.
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